Non-Invasive Digitization of Nuclear Plants

Hank Strahley, Operations Support Manager, Plant Hatch Southern Nuclear Company, Email: <u>hpstrahl@southernco.com</u> Tel: +1 (315) 236-6235

Harry Sim, CEO, Cypress Envirosystems Email: <u>harry.sim@CypressEnvirosystems.com</u> Tel: +1 (408) 307-0922

ISOP Workshop, March 25th, 2025

Problem: Most Plant Data is NOT Digitized

Solution: Non-Invasive Sensors – 5 Minute Install

Typical Installation

Typical Installation-2

Non-Invasive Digitization of Nuclear Power Plants

Family of Non-Invasive Monitoring Solutions

Wireless Temperature and Humidity Monitor

Wireless Transducer Reader (thermocouples, 4-20mA, 0-5V, dry contacts, RS-232 etc.)

Webcam Digitization (machine vision)

Wireless, Battery Operated, Non-Invasive, Install in Minutes **10% Cost of Traditional Approaches**

Southern Nuclear

Isolation

Monitor

Network Architecture – Cyber Approved

Non-Invasive Digitization Deployment at:

Southern Nuclear Company Plant Hatch, Baxley, Georgia United States

Reactor Type:GE BWR-4Units Operational:2 x 900 MWStart Operations:1975 (Unit 1)1979 (Unit 2)

Plant-wide Engagement – Broad benefits

DEPARTMENT:

- Operations
- Maintenance
- Engineering
- Chemistry
- Radiation Protection
- Monitoring & Diagnostics Center

BENEFITS:

- Improve operator efficiency
- Equipment fault detection/reduce unplanned downtime
- Reduce maintenance cost enable condition-based maintenance
- Optimizing plant thermal performance
- Improve worker safety ALARA, heat stress
- Troubleshooting via crash cart, emergent needs

Long Term Trending: Turbine Valve Actuator Temperatures

Need:

 Long term temperature trending to monitor for EHC fluid degradation due to temperature

Solution:

 Install magnetic thermocouples to each Turbine Valve Actuator

Benefit:

- Real time temperature monitoring without entry into Condenser Bay
- Eliminate Radiation dose and heat stress to personnel
- Avoid Turbine Valve failures due to EHC fluid degradation

Operator Rounds Dashboard

Concept:

- Collect rounds data throughout day using WGRs
- Operators can review trends and identify abnormalities at start of shift
- Plan and prioritize work more efficiently

Benefit:

Southern Nuclear

Reduce operator time by 2 hours per shift

CYPRESS

Faster response to excursions / emergent issues

Credit: Operator Dashboard developed by J. Plumb, Operator at Duke Energy, Oconee Nuclear Plant

25

508

26

509

27

510

111

112

113

162

163

164

171

172

173

174

175

176

177

179

180

181

187

188

189

Dry Well Temp / Humidity Monitoring

Crash Cart for Emergent Issues

Need:

 Plant needs data quickly to troubleshoot, diagnose and correct emergent issues.

Concept:

- Use Crash Cart with non-invasive sensors to collect data
- Pre-approved, ready to install in 30 minutes.

Benefit:

Southern Nuclear

- Avoid lengthy engineering reviews and approvals to add sensors
- Minimize operator man-hours
- Reduce plant downtime

Early Fault Detection: Condenser Tube Leaks

Need:

 Remotely monitor Condenser Hotwell Sodium and Conductivity to detect tube leaks

Concept:

 Use Wireless Digit Readers to monitor installed Sodium and Conductivity instruments

Benefit:

Southern Nuclear

- Early detection of tube leaks prior to impacting Reactor Chemistry
- Ability to trend chemistry data
- Remote monitoring versus having a technician gathering data

Enhance Design Modifications: Condensate Booster Pump Seal Continuous Monitoring

Application:

- Design Mod to upgrade Unit 2 condensate booster pump seals
- Added six WGRs as low-cost method to digitize/enable continuous monitoring of seal pressures.

Benefit:

- Minimize design time and cost to allow continuous monitoring.
- Enable automated equipment health monitoring and fault-detection.

Machine Vision Webcam Digitization

Application:

- Support design mod to reactor recirc pump seal purge filter.
- Monitor purge flow during post install testing.
- Normally requires operator watching webcam display.
- Replace with machine vision.

Benefit:

Reduce operator time.

📥 Southern Nuclear

- Quickly detect excursions.
- Ability to collect, trend and analyze historical data.

Webcam with Operator monitor

Automated Digitized Collection of Data

Valve Cycle Isolation Monitoring

Need:

- Detect valve cycle isolation faults.
- Minimize cost and process disruption.

Benefit:

- Stop leaks, save MW's (est. up to 2MW per malfunctioning valve).
- Save operator time to monitor valves

Detect Leaking Valves

Stakeholder Engagement, Sustainable Adoption

- Clear procedures for tasks, roles, and ownership.
- Lots of training.
- Users Group to share OE and best practices

 Industry wide group plus Southern chapter.
- Create library of Use Cases with documented benefits.
- PROACTIVE DO NOT TAKE ADOPTION FOR GRANTED.

	Sou	thern Nuclear	HATCH Unit C
		DI-OP S-96-1222	
		Control of Wireless Gauge Readers	
Sner	ial Consideratio	VERSION 1.1	
spec			
	Applicable t	o HNP	
		ROCEDURE LEVEL OF USE CLASSIFICATION PER NMP-AP-003	
	CATEGORY Continuous	ROCEDURE LEVEL OF USE CLASSIFICATION PER NMP-AP-003 SECTIONS NONE	
	CATEGORY Continuous Transient	SECTIONS	
	CATEGORY Continuous	NONE	
	CATEGORY Continuous Transient Response	NONE NONE	
	CATEGORY Continuous Transient Response Reference	SECTIONS NONE NONE ALL	
	CATEGORY Continuous Transient Response Reference	SECTIONS NONE NONE ALL NONE Hank Strahley	08/15/23
	CATEGORY Continuous Transient Response Reference Information	SECTIONS NONE NONE ALL NONE Hank Strahley Approved By	08/15/23 Date
Eff	CATEGORY Continuous Transient Response Reference Information	SECTIONS NONE NONE ALL NONE Hank Strahley	
Eff	CATEGORY Continuous Transient Response Reference Information	SECTIONS NONE NONE ALL NONE Hank Strahley Approved By	

Deployments – N. America Nuclear Fleet (34 plants)

- Duke Energy (Fleetwide: Oconee, Robinson, Brunswick, Harris, Catawba, McGuire)
- Southern (Fleetwide: Farley, Hatch, Vogtle)
- Xcel Energy (Fleetwide: Prairie Island, Monticello)
- PSEG (Fleetwide: Salem, Hope Creek)*
- Bruce Power (Canada)
- Constellation Energy (Calvert, Braidwood, Clinton, JAF, Nine Mile Point, Limerick, Ginna, Peach Bottom)
- NextEra (Fleetwide: Turkey Point, St. Lucie, Point Beach, Seabrook)
- Vistra (Comanche Peak, Davis Besse)
- STP Nuclear (South Texas)
- Nebraska Public Power District (Cooper)
- Arizona Public Service (Palo Verde*)
- Entergy Vermont Yankee (1 unit decommissioned)
- EPRI Charlotte Nuclear Applications Center (installed)
- France EDF (pilot deployment)
 - * Pending Installation

Q&A

