Non-Invasive Digitization of Nuclear Plants

Hank Strahley, Operations Support Manager, Plant Hatch Southern Nuclear Company, Email: <u>hpstrahl@southernco.com</u> Tel: +1 (315) 236-6235

Harry Sim, CEO, Cypress Envirosystems

Email: <u>harry.sim@CypressEnvirosystems.com</u> Tel: +1 (408) 307-0922

Technical Meeting onOperating Experience on the Use of Digital Technologies for Instrumentation and Control Systems

Vienna, September 2-4, 2025

Fantastic to explore new technologies, a reality...

Southern Nuclear 🥠 CYPRESS

Also reality: most plant data is not even digitized

Upgrade / Digitization Challenges

- Disruptive to operations downtime needed
- Lengthy review and approval cycle (EC's)
- High cost and long payback

Solution: Non-Invasive Sensors – 5 Minute Install

Page 5

Typical Installation-1

Minimal disruption to existing operator rounds

WGR Users Group 2025

Typical Installation - 2

CYPRESS ENVIROSYSTEMS*

Southern Nuclear

Outdoors, Radiologically Controlled Area, Safety Related, Seismic Related

Family of Non-Invasive Monitoring Solutions

Steam Trap

Monitor

Wireless Temperature and Humidity Monitor

Wireless Transducer Reader (thermocouples, 4-20mA, 0-5V, dry contacts, RS-232 etc.)

Webcam Digitization (machine vision)

Wireless, Battery Operated, Non-Invasive, Install in Minutes 10% Cost of Traditional Approaches

📥 Southern Nuclear

WGR Users Group 2025

Network: Cybersecurity approved for nuclear plants

Level 2 Business Network (ethernet)

Southern Nuclear 🛛 🤌 CYPRESS

3rd Party Sensors - Vibration Monitoring

- Honeywell partnership with Cypress
- Vibration sensor, 3-axis
- RMS velocity and acceleration
- FFT calculated for 12 "frequency bins"
- 3-year battery life (typical)
- Mounting options: Stud, Magnetic, Adhesive
- Compatible with Cypress LoRaWAN Blue Box, GBC
- Data available to PI Historian

HONEYWELL VERSATILIS TRANSMITTER

Multi-Variant Sensing

Honeywell Versatilis[™] Transmitter is a multi-variant sensing platform based on the latest LoRaWAN[®] protocol communication technology. Its inherently low-power compact design coupled with quick & easy installation, and commission helps manufacturers to deploy them at scale with the lowest CAPEX and negligible OPEX. These sensors are designed to monitor and predict the health of rotating equipment like motors, pumps, blowers, fans, compressors, and gearboxes. In addition, they can be deployed to remotely monitor the position of manual valves, the health of steam traps, and the surface temperature of static process equipment. They can also be deployed to monitor environmental conditions in life science facilities.

MEASUREMENT PARAMETERS:

Surface	Ambient	Ambient
Temperature	Humidity	Pressure
Vibration	Audio	Ambient
	Acoustics	Temperature

Figure 1– Honeywell Versatilis Transmitter

SENSORS AND COMMUNICATIONS:

The Honeywell Versatilis platform contains a suite of sensors encompassing versatile sensing parameters such as pressure, temperature, humidity, triaxial accelerometer, and audio accustics MEMS to provide insightful measurements. Sensors on the platform are selected to cover a broad frequency spectrum enabling adequate sensing coverage of process and physical phenomena. Sensor fusion analysis on the acquired measurements can be performed. Any specific parameter is customizable in either software or hardware according to the requirement of a specific application. Each measured parameter contributes a unique dimension thereby augmenting the system into a multi-dimension sensing platform. Sensor data can be transferred over the LORAWAN[®] network which is protected through secure key authentication. The Honeywell Versatilis Transmitter can be configured to notify the application through Event Triggers and FFT (Fast Fourier Transform) Triggers.

Figure 2– Assembly

Honeywell

Honeywell Versatilis[™] Transmitter Technical Specification Honeywell Proprietary

Drone Integration: Dry Cask Inspection

Skydio Drone

- May be piloted
- Or autonomous

Skydio Dock

- "Garage" protection
- Recharging
- Data download

Installed at 32 nuclear plants in N. America

- Duke Energy (Fleetwide: Oconee, Robinson, Brunswick, Harris, Catawba, McGuire)
- Southern (Fleetwide: Farley, Hatch, Vogtle)
- Xcel Energy (Fleetwide: Prairie Island, Monticello)
- PSEG (Fleetwide: Salem, Hope Creek)*
- Bruce Power (Canada)
- Constellation Energy (Calvert, Braidwood, Clinton, JAF, Nine Mile Point, Limerick, Ginna, Peach Bottom)
- NextEra (Fleetwide: Turkey Point, St. Lucie, Point Beach, Seabrook)
- Vistra (Comanche Peak, Davis Besse, Beaver Valley)
- STP Nuclear (South Texas)
- Nebraska Public Power District (Cooper)
- Arizona Public Service (Palo Verde*)
 - * Pending Installation

International Atomic Energy Agency Innovation Award 2024

"The ISOP Innovation Awards aim to highlight and recognize innovative use cases within the nuclear power industry. This programme showcases practical applications of cutting-edge technologies and solutions that have been successfully implemented in operating nuclear power plants."

WGR Users Group 2025

Use Case Library - Update

otform Tables 👻		😂 Use Case	Library - N _{Last up}	Ion-Invasive N dated at 18 Apr 2023	uclear Plant Digit 8:08 AM C	ization 🥪	→ Share ② Help
ase Library - Non-Invasive Nuclear Plant Digitization 🕴 🔟 WGR	Case Studies - Reports	+ Add Tab					
Filter y							💿 Columns 🗸 🔳 Form 🗸
Title of Use Case ~	Utility ~	Plant	• • T •	Depart v	Plant Location ~	Plant System or Sub-System ~	What improvements/benefits come from the data?
Enable condition Based Maintenance for condensate polisher filters	Constellation	Clinton	BWR	Maintenance	Turbine Building	Condensate Polishing System	Operator Efficiency ALARA reducing dosage exposure Maintenance
Fault detection for Air Operated Valves for Feedwater Heaters	Constellation	Calvert Cliffs	PWR	Engineering	Turbine Building	Feedwater Tanks Air Operated Valves	Operator Efficiency Fault Detection Maintenance Effort/Consuma
Fault Detection for Stator Cooling Water Control Valves	Southern Company	Hatch	BWR	Operations	Turbine Building	Generator Stator	Operator Efficiency Fault Detection Maintenance Effort/Consumal
Improve efficiency of Operator rounds	Duke Energy	Oconee	PWR	Operations	Multiple		Operator Efficiency ALARA reducing dosage exposure
Fault Detection for Reactor Recirculation Pump Seals	Duke Energy	Brunswick	BWR	Engineering	Reactor Building	Reactor cooling	Fault Detection
DRAFT - Enhance operator efficiency for thermal performance monitoring	PSEG	Hope Creek	BWR	Operations	Turbine Building	Feedwater Heaters	Operator Efficiency Fault Detection
Fault Detection for Transformers	Constellation	Calvert Cliffs	PWR	Engineering	Other	Transformers	Operator Efficiency Fault Detection
Ensure personnel safety - Temperature and Humidity Monitoring View	Constellation	Calvert Cliffs	PWR	Operations	Turbine Building	Work and storage environment	Operator Efficiency Safety (e.g. Heat Stress, Confined Space etc.)
Improve groundwater management monitoring	Duke Energy	Brunswick	BWR	Chemistry	Other	Sump Pumps	Operator Efficiency Fault Detection Compliance (e.g. Environment
Implement Condition Based Maintenance of Condensate Polisher Demin	Energy Harbor	Davis Besse	PWR	Chemistry	Turbine Building	Condensate Polishing System	Operator Efficiency Maintenance Effort/Consumables
Enhance Operator Efficiency for Monitoring Intake Screen	Constellation	Nine Mile Pt	BWR	Operations	Intake	Intake screens	Operator Efficiency
Improve personnel safety for negative pressure compliance monitoring	Constellation	Nine Mile Pt	BWR	Other	Multiple	Negative pressure locations	Operator Efficiency Safety (e.g. Heat Stress, Confined Space etc.)
DRAFT - Condition based monitoring of lube oil filters	Constellation	Nine Mile Pt	BWR	Engineering	Turbine Building	Lubricating oil system	Fault Detection
Fault Detection - Cycle Isolation Valve Temperature Monitoring	Duke Energy	Harris	PWR	Engineering	Turbine Building	Cycle isolation valves	Thermal Performance Improves efficiency of the Thermal Performance
Feedwater Heater Temperature Monitoring	Duke Energy	Robinson	PWR	Engineering	Turbine Building	Heater Drain	Troubleshooting/Emergent Issues
DRAFT - Fault detection for condensate vacuum pumps and valves	PSEG	Salem	PWR	Engineering	Turbine Building	Condensate pumps and valves	Operator Efficiency Fault Detection Maintenance Effort/Consuma
DRAFT - Fault detection & troubleshooting for containment moisture rem	Bruce Power	Bruce A	CANDU	Engineering	Other	Dryer system for containment moist	Operator Efficiency Fault Detection Maintenance Effort/Consuma
DRAFT - Safety Surveillance Monitoring remote monitoring	Luminant	Comanche Peak	PWR	Operations	Multiple	Safety related systems	Operator Efficiency Fault Detection
Operator Efficiency - Automating Webcam Monitoring	Southern Company	Vogtle	PWR	Operations	Turbine Building		Operator Efficiency Fault Detection Maintenance Effort/Consumal

Plant-wide Engagement – Broad benefits

DEPARTMENT:

- Operations
- Maintenance
- Engineering
- Chemistry
- Radiation Protection
- Monitoring & Diagnostics Center

BENEFITS:

- Improve operator efficiency
- Equipment fault detection/reduce unplanned downtime
- Reduce maintenance cost enable conditionbased maintenance
- Optimizing plant thermal performance
- Improve worker safety ALARA, heat stress
- Troubleshooting via crash cart, emergent needs

Condition Based Monitoring – FRF Filters

Bruce Power

Need:

- Apply Condition Based Monitoring to FRF filters. Replace consumables only when data shows it is necessary.
- Note: FRF Filters remove impurities which can cause damage or malfunction to the hydraulic system.

Solution:

- Use WGR's to monitor and trend delta pressure across FRF filters.
- Replace filters at designated delta P.

Benefit:

- Save filter consumables.
- Avoid system damage or downtime due to undetected filter rupture or clog.

Operator Rounds Dashboard

Southern Hatch Duke Oconee

Concept:

- Collect rounds data throughout day using WGRs
- Operators can review trends and identify abnormalities at start of shift
- Plan and prioritize work more efficiently

Benefit:

Southern Nuclear

- Reduce operator time by 2 hours per shift
- Faster response to excursions / emergent issues

CYPRESS

Credit: Operator Dashboard developed by J. Plumb, Operator at Duke Energy, Oconee Nuclear Plant

25

508

26

509

27

510

111

112

113

162

163

164

171

172

173

174

175

176

177

179

180

181

187

188

189

Crash Cart for Emergent Issues

Southern Hatch

Need:

 Plant needs data quickly to troubleshoot, diagnose and correct emergent issues.

Concept:

- Use Crash Cart with non-invasive sensors to collect data
- Pre-approved, ready to install in 30 minutes.

Benefit:

Southern Nuclear

- Avoid lengthy engineering reviews and approvals to add sensors
- Minimize operator man-hours
- Reduce plant downtime

Feedwater Heater Level Fault Detection

Constellation

Feedwater Heater Level - Webcam Digitization

Duke Brunswick

Need:

- Automate data collection from feedwater heater including heater level.
- Prior issue resulted in heater taken offline for repairs.
- Must rely on vertical gauge local indicator.

Solution:

- Install Panasonic IP camera, use GBC machine vision capability to digitize image.
- Data can be stored in PI Historian.
- Operator can look at digitized trend data on PI Vision instead of just watching webcam video.

Data collected and displayed via PI Historian

Dry Well Temp / Humidity Monitoring

Need:

• During outage: Monitor temperature and humidity for worker safety.

Southern Hatch

• Minimize time and dosage exposure for RP Tech to gather data each shift.

Solution:

 Use magnetic mount temporary noninvasive Wireless Temperature and Humidity Monitors.

Benefit:

- Save 1.5 Man-hours/day, 45 Man-hours outage total
- Reduce 8 mrem/day, 240 mrem outage total radiation exposure
- Reduced Industrial Safety exposure

Wireless Remote Radiation Monitor

- Real-time wireless mobile radiation dose rate monitor
- Battery operated: does not require power nor communications wires
- No need to install additional wireless network (uses Blue Box Gateway and GBC)
- Data via OPC or RESTful API available to PI Historian, 360 Plant Walkthru Software etc.

Southern Nuclear 🧳 CYI

WGR Users Group 2025

Valve Cycle Isolation Monitoring

Need:

- Detect valve cycle isolation faults.
- Minimize cost and process disruption.

Benefit:

- Stop leaks, save MW's (est. up to 2MW per malfunctioning valve).
- Save operator time to monitor valves

Detect Leaking Valves

Q&A

