Field Device Strategies for Sustainability

*Chris Stubbs, Genentech February 4*th, 2009

© 2003, Genentech

Agenda

- Genentech: Company Overview
- Continuous Improvement Initiatives
- Condition Based Maintenance
- Advantages of Non-Invasive Wireless Monitoring
- Specific Solution Examples
 - Steam Traps
 - Ultra Low Critical Freezers
- Implementations to-date

Genentech: Company Overview

- Description: Leading Biotechnology company in drug discovery, development, manufacture, and commercialization \$10B US Sales. ~11,000 Employees.
- Mission: Our mission is to be the leading biotechnology company, using human genetic information to discover, develop, manufacture and commercialize biotherapeutics that address significant unmet medical needs.
- Manufacturing: Cell Fermentation Process 330,000 liter capacity across five campuses: So. San Francisco CA, Vacaville CA, Oceanside CA, Hillsboro OR, Singapore

Some of the Cost Saving Initiatives

This project has been initiated as part of our continuous improvement efforts.

Key challenges and guiding principles:

- Reduce energy costs, while enabling sustainable manufacturing
- *Improve uptime and reduce labor costs* via better plant asset management and condition based maintenance
- Achieve this with the *fastest payback* and *minimal plant disruption*

Considerations for Condition Based Maintenance

Equipment / Issue	Wastes Energy	Labor Intensive	Unplanned Downtime	Comments
Steam Traps Steam traps fail, causing loss of costly steam	\checkmark	~		Undetected leaks can cost >\$5K per year per trap. Manual monitoring of traps is labor intensive.
Ultra-low Critical Freezers Old stand-alone equipment fails, causing downtime and potential loss of expensive samples		\checkmark	\checkmark	Compressor problems remain undetected until failure, leading to expensive emergency replacement and potential loss of samples.
Air Handling Units Old equipment has no monitoring or diagnostics. Increased downtime and consumables use (filters, belts).		~	\checkmark	Time-based maintenance and replacement of filters (consumables), vs. condition based maintenance.
Water Pretreatment System No monitoring on filters, pump, support utilities. Higher consumables (filter) use, no energy usage baseline.	\checkmark	~	\checkmark	Costly multimedia filter change-outs not optimized, labor intensive manual rounds, lack of energy use baseline.

Considerations for Conditions Based Maintenance – Potential Benefits and Savings

Potential Benefits

Steam Traps

Proactively detect and avoid leaksReduce inspection needs

Ultra-Low Critical Freezers

Proactively detect failuresAvoid freezer replacementAvoid sample loss

Air Handling Units

Save labor and filtersPredictive maintenance reduces downtime

**Annual savings estimated based on 500 units.

Potential Savings

Advantages of Non-Invasive Wireless Monitoring

	Traditional Monitoring	Non-Invasive Wireless Monitoring	
Plant Disruption	InvasiveProcess interruption requiredWiring required	 Non-invasive, clamp-on devices No process interruption Minimal wiring 	
Reliability	Power source requiredReal-time data collection	 Battery operated Once/second data collection 	
Engineering	 Changes existing system May require engineering change management System re-commissioning required for restart 	 No changes to existing system Minimal engineering change management No system restart required 	
Infrastructure	May require new software	Interface available for integration into existing infrastructure	
Cost	\$3,000 - \$5,000 per point	\$750 - \$1,500 per point	

Traditional Monitoring Solutions are expensive and disruptive, resulting in long payback.

Non-Invasive Wireless Monitoring offers a cost effective alternative.

Solution for Steam Traps

- Provides early indication of steam leakage or blockage, which lead to steam trap failure
- Manual inspection typically done annually labor intensive, do not catch problems in timely manner
- One year payback on investment

Non-Invasive, Wireless approach reduced time and cost to install, reduced ongoing manual inspection cost, reduced steam loss.

Solution for Steam Traps

Implementation to Date •56 Steam trap monitors installed

•Project Start: 09/2008

•\$42,000 Installation Cost

•\$42,525 Estimated Savings to Date

Solution for Ultra-Low Critical Freezers

- Monitors health of -80°C freezers holding critical material and samples
- Measures critical parameters including high-stage and low-state compressor current, door open/close status, and internal temperature
- Provides early indication of refrigerant leak or door seal problem, which lead to freezer failure

Solution for Ultra-Low Critical Freezers

Implementation to Date 20 Freezer monitors installed

•Project Started: 09/2008

•\$20,000 Installation Cost

•\$20,000 Estimated Savings to Date

First month of monitoring already paid for project cost through early failure detection

Implementations to Date

- South San Francisco Campus (HQ)
- First installation in Q1 2008
- By 2008 year-end, total of 100 units installed
- Estimated annualized savings >\$75K
 - Steam Traps, 56 units
 - -80°C Freezers, 20 units
 - Air Handlers, 4 units
 - Reverse Osmosis Water Treatment, 15 units
 - Other Utility Systems, 5 units

ARC Orlando Forum 2009, Field Device Strategies for Sustainability Slide 13 2

Questions?

© 2003, Genentech

Potential Savings Calculation (slide 6)

	Steam Traps	Freezers	Air Handler Units
	500 traps, 20% failure rate	500 freezers, 20% failure rate	500 AHUs
Eporav	53 lbs/hr steam loss @ \$15/1000lb	\$12K replacement cost ea.	1 HEPA / AHU @ \$5000
Savings	\$580 steam loss per trap monthly	\$7K repair cost ea.	av.15 pre-filters / AHU @ \$100 ea
01	6 month leakage (\$350K)	100% replacement (\$1.2M)	HEPA replaced annually,
01		,	pre-filters quarterly (\$500K)
Fauinment	VS.	VS.	VS.
Savings			HEPA replaced bi-annually,
	minimal leakage	70% repair (\$850K)	pre-filters semi-annually (250K)
	\$350K Annual Savings Potential	\$350K Annual Savings Potential	\$250K Annual Savings Potential
	20 minute trap inspection annually	30 minute PM time semi-annually	60 minute PM time semi-annually
Labor	$\sim 170 \text{ hr annually}$	\sim 500 hr annually	~ 1000 hr annually
Savings			
	Reduced to no inspection	Reduced to 5 min. semi-annually	Reduced to 35 min. semi-annually
\$45/hr rate		~83 hr annually	~583 hr annually
	\$7.7K Annual Savings Potential	\$19K Annual Savings Potential	\$19K Annual Savings Potential

Implementation Savings Calculation (slide 12)

Installed Units	Cost	Savings	Install Date	Savings Calculation
56 Steam Traps	\$42,000	\$42,525	09/2008	2 - 1/4" traps blown for 6 months at \$15/1000 lbs = 210,000 lb/month x 6 months x 15/1000 x 2 traps = \$37,800 2 - 1/8" traps 50% blown for 6 months at \$15/1000 lbs = 52,500 lb/month x 50% x 6 months x 15/1000 x 2 traps = \$4,725
20 Freezers	\$20,000	\$20,000	09/2008	\$5000 per freezer x 4 failed freezers = \$20,000
4 Air Handlers	\$4,800	\$13,400	04/2008	3 AHUS with 4 pre-filters each, changed 4x a year, reduced to 2x per year at \$100 per filter = 4 x 2 x \$100 x 3 = \$2,400 1 AHU with 55 pre-filters, changed 4x a year, reduced to 2x per year at \$100 per filter = 55 x 100 x 2 = \$11,000
15 RO Monitoring Points	\$18,000	TBD	04/2008	TBD: labor savings, troubleshooting, downtime savings **Note: savings hard to calculate due to regulatory impact of maintenance changes.
5 Other Misc. Points	\$6,000	TBD	04/2008	TBD: labor savings, troubleshooting, downtime savings
Totals	\$90,800	\$75,925		Payback of 14 months

