

V້າຮຳວັກ experience answers

OT and IT Convergence in the Nuclear Fleet

Bill Ansley, Exelon Corp. ARC Forum, February 6th, 2019

Bill Ansley Innovation Specialist

Exelon Generation

Power Generation

Constellation

- Largest merchant fleet in the nation ~33 GW of capacity, with unparalleled upside
- One of the largest and best managed nuclear fleets in the world (~19 GW)
- Significant gas generation capacity (~10 GW)
- Renewable portfolio (~1 GW), mostly contracted

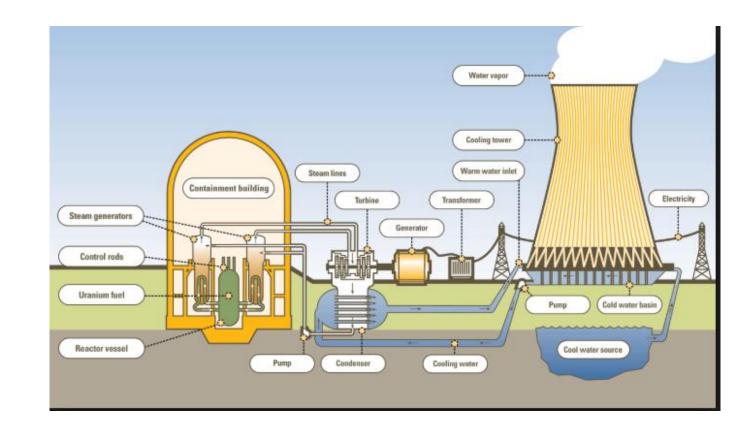
- Leading competitive energy provider in the U.S.
- Customer-facing business, with ~2.5 M customers and large wholesale business
- Top-notch portfolio and risk management capabilities
- Extensive suite of products including Load Response, RECs Distributed Solar

Exelon Utilities

BGE, ComEd, PECO, & PEPCO

- Largest electric and gas distribution company in the nation with ~10 M customers
- Diversified across multiple jurisdictions - Illinois, Maryland, Pennsylvania, Delaware, New Jersey, Wash DC
- Significant investments in Smart Grid technologies
- Transmission infrastructure improvemen**t** at utilities

Competitive Business

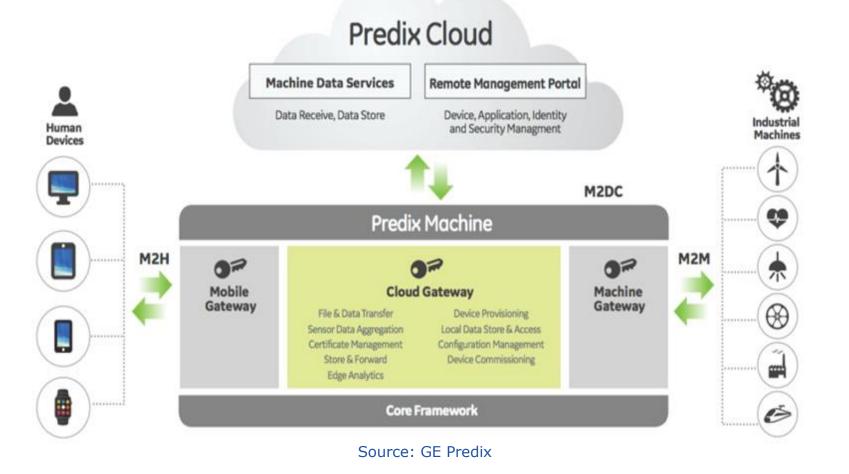

Regulated Business

Exelon is the largest competitive integrated energy company in the U.S.

Overview of a Typical Nuclear Power Plant

- Two types: Pressurized Water Reactor (Westinghouse) & Boiling Water Reactor (GE)
- Most plants were built in 70s & 80s
- Everything is analog, pneumatic & local display – 80s technology
- ~1,000 staff on site
- Lots of concrete & steel very costly to run wires
- Every site had a custom design no standard

"Delivering the Nuclear Promise" Industry Wide Initiative


Nuclear power industry costs increasing while facing unprecedented competition from low-cost shale gas based power generation

Nuclear Energy Institute (2015):

 Over the last 10 years, generating costs for U.S. reactors has increased roughly 28%. In response NEI and the nuclear industry developed the Nuclear Promise, which is designed to reduce generating costs by 30% by 2018

The IT Vision – IoT for Delivering the Nuclear Promise

• Gather data from sensors.

- Leverage Predix "Digital Twin" analytics:
 - Reduce unplanned downtime – condition based maintenance
 - Reduce labor costs
 - Improve safety and reduce worker radiation exposure
 - Optimize process efficiency
 - Streamline compliance

The OT Reality – Typical Existing Plant

- Plants built 30-40 years ago, unable to digitize due to stringent and costly regulations and cannot disrupt operations.
- Manual and analog instruments, pneumatic air operated valves and controllers.
- No plant data network, limited power outlets in plant locations
- Technicians conduct manual rounds, but must limit radiation exposure.

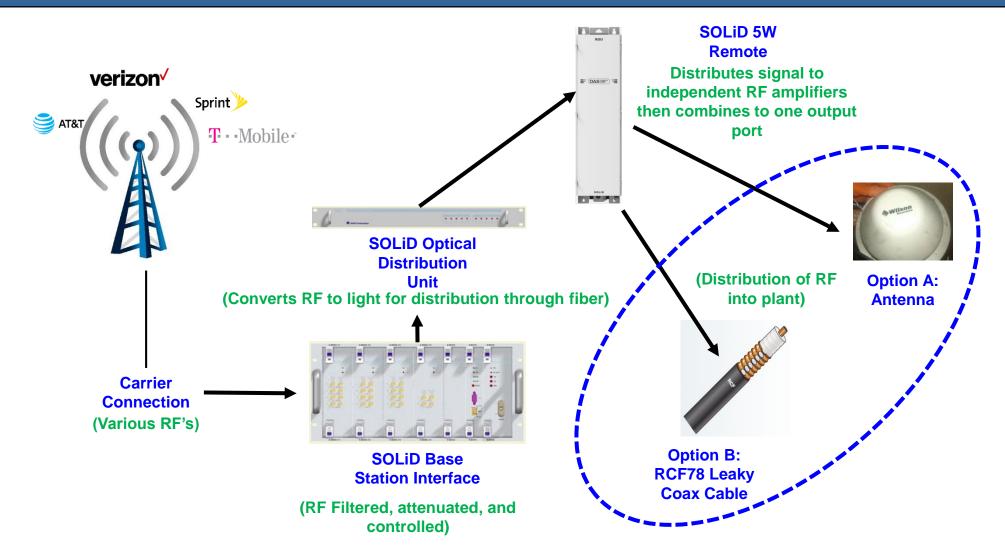
The Gap Between the IT Vision and OT Reality

The "Gap" Challenge:

- Huge investment in IoT analytical software (Predix) promises significant operational benefits
- But lack of access to data to feed Predix is limiting full IoT potential
 - No existing wireless or data networks
 - Traditional methods to "digitize" existing plants too expensive and too disruptive to operations

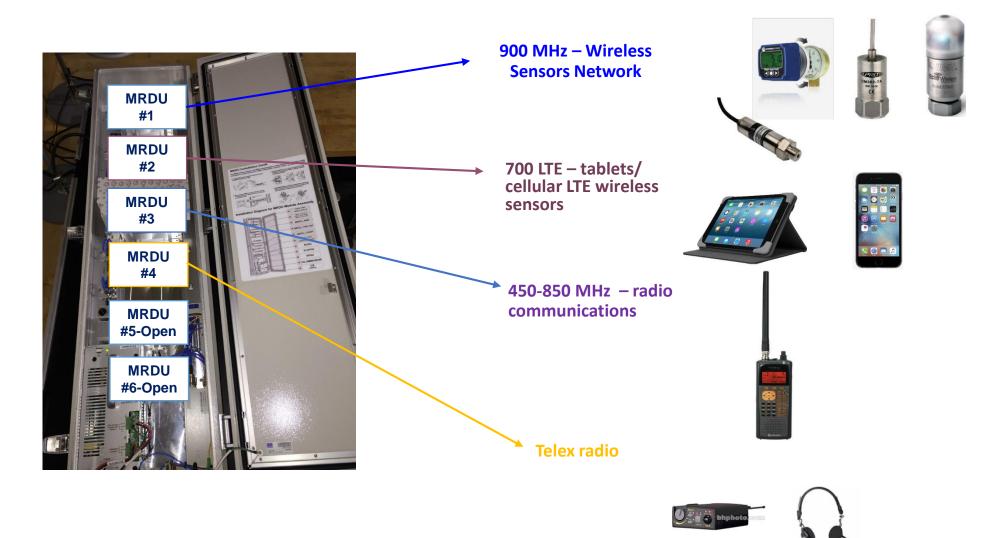
Two Key Strategies to Address "Gap"

Deploy Distributed Antenna System (DAS):


Single wireless backbone to satisfy broad range of application needs – in-plant cellular coverage, high-rate process data, low-rate equipment health data, mobile workers and devices, telex radio

Deploy Non-Invasive Wireless Instrumentation:

- Use new non-invasive wireless clamp-on technologies no downtime/process disruption
- Limits expensive safety and engineering review/analysis, costly cable runs
- Interface with Predix and existing plant IT systems (e.g. historian)



How DAS Works...

Solid-DAS Allows Multiple Platform on Same DAS

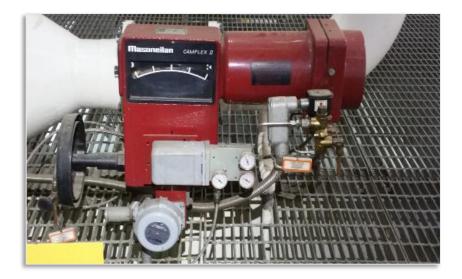
Example Non-Invasive Digitization: Wireless Gauge Reader (WGR)

Pneumatic Level Controllers

Wireless Gauge Reader

"Digitized" Pneumatic Controller

- "Electronic Eyeball" transmits readings wirelessly
- Non-invasive, clamp-on to existing gauges less than 15 minutes per gauge to install
- Installed Cost per Gauge \$1,500
- No process downtime, no leak check, no wiring
- Estimated 10,000 potential data points per site which can use this technology to capture data



Case Study: Pneumatic Valve CBM

Pneumatic Actuated Valve – Water Level Control for Feedwater Heaters (36 units "digitized" in Plant)

NON INVASIVE DIGITIZATION

- Valve faults can cause feedwater disruptions which reduce plant power output, or even result in plant shutdown in a more serious case.
- Single unplanned plant shutdown costs \$3M (actual case).
- Cost to retrofit with digital positioners > \$100,000 each, not including plant downtime impact.

- Non-invasive Wireless Gauge Readers enable Condition Based Monitoring to predict and avoid excursions/shutdowns.
- Data collected allows "Digital Twin" feedwater optimization.
 >1% efficiency improvement, \$12M/year benefit.
- Installed cost per unit approx. \$8,000. Time to install under 1 hour – no disruption to operations.

Benefits

Reduce unplanned downtime Increase revenue and MWhrs online

• Minimize PM costs Transition from time-based maintenance to condition based maintenance

Work process improvement

Data driven to analyze, document, & resolve issues

• Improve process efficiency Enable "digital twin" model to optimize process parameters

• Increase plant safety Enable "digital twin" to predictively identify faults

• Enhance worker safety

Minimize radiation dose exposure for routine work

Standardization and Compliance

Fleet wide consistent monitoring of performance, governance, oversight

Lessons learned & Future Plans

AWS.GOV Cloud

Switching from AWS to GOV cloud delayed project about a year

• Predix APM Development Has Been Slow

Unified APM (combine smart signal and Meridium) – do sooner

• Limited Sensor Selection in 915 MHz range

Develop and deploy low-cost and *non-invasive* wireless instrumentation

• IT/Cybersecurity Get teams on-board early

VISION experience answers

Thank you

For more information, contact william.ansley@exeloncorp.com or visit our web pages at

www.arcweb.com