Retrofitting Legacy Pneumatic Controls

Overview for Hospitals

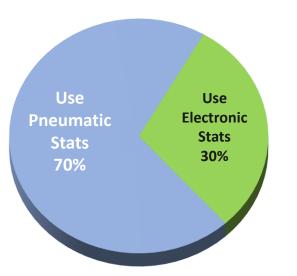
6/20/2023

Healthcare Users of WPT Technology – select examples

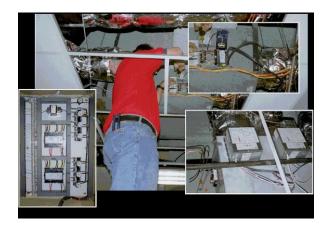
- Sutter Health (6 sites)
- LifePoint (14 sites, 4 installed)
- VA Medical Centers (12 sites)
- NYC Health and Human Services (3 sites)
- Atrium, Advocate, Aurora (4 sites)
- Yale Medical Center
- Catholic Health Saint Francis Hospital

What Problem Are We Solving?

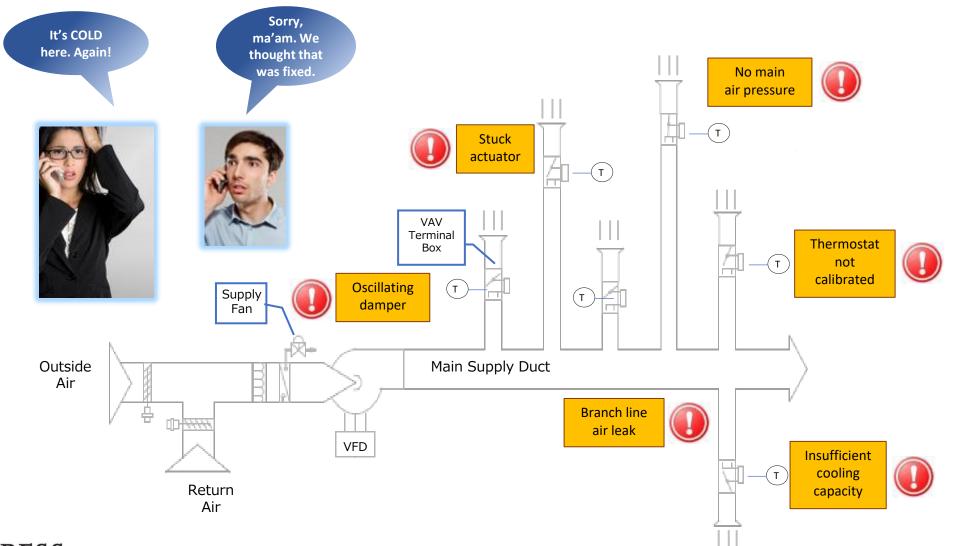
Recognize these thermostats?



- Non-communicating, non-programmable, cannot implement basic energy savings strategies
- No monitoring, no alarming, no fault detection only irate occupants with hot/cold calls
- Undetected faults (e.g. stuck dampers, uncalibrated thermostats) waste energy and cause discomfort
- No BACnet, cannot integrate with Building Automation Systems

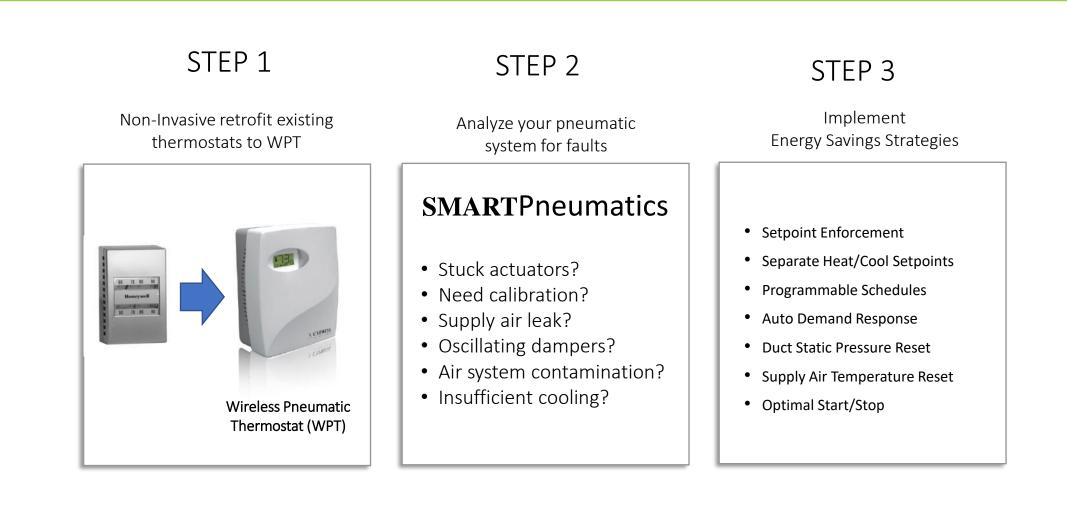

Most Non-Residential Buildings Still Employ Pneumatics

Estimated 60 million pneumatic thermostats still in use for Non-Residential Buildings


Why so many pneumatics still?

- Buildings constructed before 1999
- Conventional DDC retrofit too disruptive to occupants
- Requires opening up walls & ceilings, replacing actuators, running wires
- Very expensive, >\$2,500 per stat
- Payback period >10 years . Typically not economical.

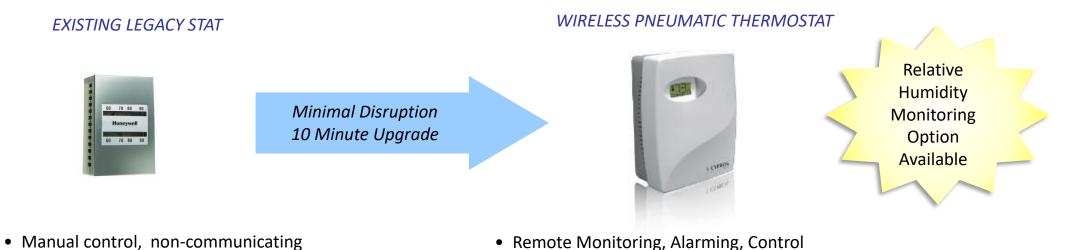
Pneumatic Shortcomings – No Visibility


Pneumatic Shortcomings – Uses 20-30% More Energy

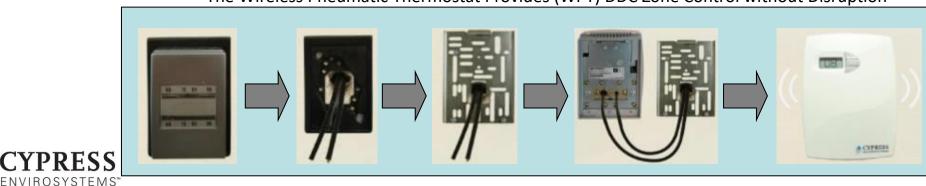
 No remote control No programmability
 X Separate Heating and Cooling Setpoints
 X Programmable Occupancy Schedules
 X Auto Demand Response (zone level)
 Puct Static Pressure Control
 ? Supply Air Temperature Resets
 ? Optimal Start/Stop

Pneumatic Controlled Buildings Uses 20-30% More Energy Than DDC Controlled Energy Savings Strategies We Take For Granted in New Buildings are NOT POSSIBLE

How to Help Existing Buildings

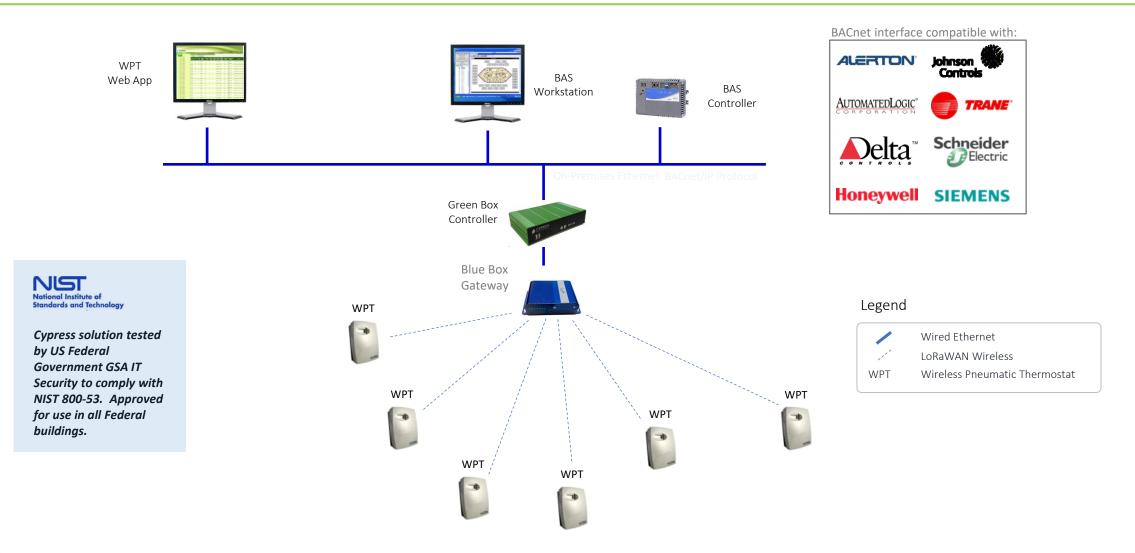


Our Solution: Wireless Pneumatic Thermostat


• No fault detection, no energy savings

• Manual Calibration Required

strategies



- Remote Monitoring, Alarm
 - BACnet Integration with 3rd party BAS
 - Automatic Self-calibration
 - Programmable energy savings, demand response strategies

The Wireless Pneumatic Thermostat Provides (WPT) DDC Zone Control without Disruption

WPT System Components and Architecture

Tchnology Vetted by U.S. DOE GSA Proving Ground

Where does M&V recommend deploying Wireless Pneumatic Thermostats?

ANY FACILITY WITH CONVENTIONAL PNEUMATIC CONTROLS

Deployment priority should be given to facilities with high energy costs

*Wireless Pneumatic Thermostat Evaluation, Ronald Reagan Building and International Trade Center, Washington, DC, Dan Howett, P.E., Mahabir Bhandari, PhD ORNL, March 2015, p. 2 *Ibid, p.3 *Ibid, p.4 *Ibid, p.4

The Green Proving Ground program leverages GSA's real estate portfolio to evaluate innovative sustainable building technologies. www.gsa.gov/gpg | gpg@gsa.gov

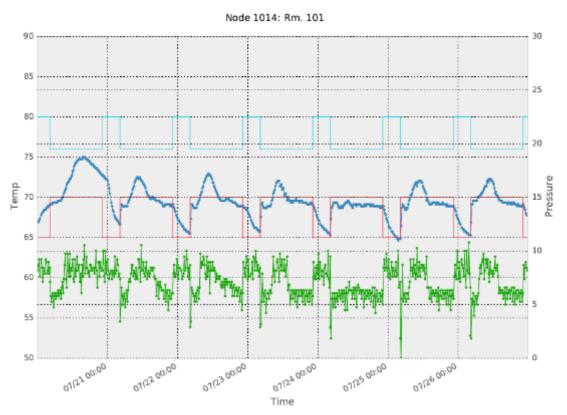
"Our wireless pneumatic thermostats are easy to use and cost-effective, and they provide access to energy-saving control strategies that weren't available through our old pneumatic system."

-Greg Dix Building Manager, Ronald Reagan Building Washington, D.C. National Capital Region U.S. General Services Administration

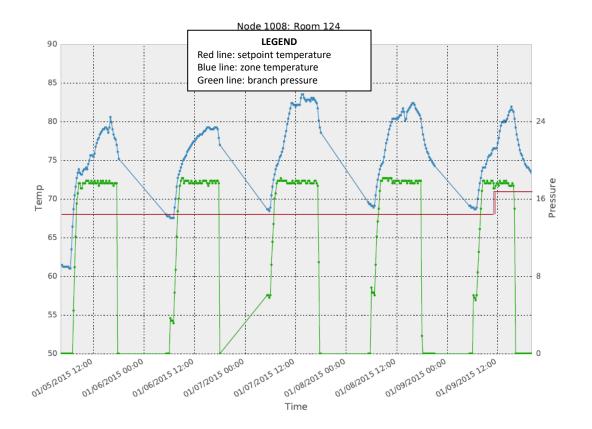
Finalist – 2016 Federal Energy Management Program JUMP Award

Link to GSA/DOE Report:

https://www.gsa.gov/governmentwide-initiatives/climate-action-and-sustainability/emerging-building-technologies/published-findings/energy-management/wireless-thermostats-for-product and a sustainability/emerging-building-technologies/published-findings/energy-management/wireless-thermostats-for-product and a sustainability/emerging-buil


How to Help Existing Buildings

Enables Trending of Key Pneumatic Parameters


- Monitor, Trend, Alarm, Notify on Zone Temperatures, Setpoint Temperature(s), Branch Pressure, and Relative Humidity.
- BACNet Integration control and view via BAS, or directly via GBC Controller.
- Know who is uncomfortable before they complain.

Green Line = Branch Pressure Dark Blue Line = Room Temperature Light Blue Line = Cooling Setpoint Red Line = Heating Setpoint

Example of Fault Detection: Zone Temperature Always Hotter than Setpoint

- Hot water valve for reheat was broken and stuck open.
- Terminal unit was always in maximum heat, even though thermostat commanded maximum cooling for that zone.
- Corrective Action: Repair/replace faulty valve actuator.

SMARTPneumatics – Al for Pneumatics

1

Wireless Pneumatic Thermostat collects extensive sensor and operational data on zone temperatures, setpoints, occupancy modes, air pressure etc.

ime	NodeID	Node Nan Type	Setpoint (Z	one Tem B	ranch PreBattery	Le Occupane Hop-1	Hop-2	Hop-3	Hop-4	Hop-5	Hop-6	RSSI-	1 RSS	il-2 RSSI	-3 RS	5SI-4 RSSI	I-5 F	ISSI-6
11/27/2015 0:04	10	Barnes Co Conv	62	69.8	18.95 OK	Occupied	15	14	13	12	11	1	5.38	5.21	3	2.5	3	4
11/27/2015 0:19	10:	Barnes Co Conv	62	69.8	18.68 OK	Occupied	15	14	13	12	11	1	5.42	5.21	3	1.86	3.33	3.67
11/27/2015 0:34	103	Barnes Co Conv	62	69.8	18.42 OK	Occupied	15	14	13	12	11	1	5.42	5.21	3	2.5	3	4
11/27/2015 0:49	103	Barnes Co Conv	62	69.8	18.68 OK	Occupied	15	14	13	12	11	1	5.42	5.25	3	2.5	3.33	3.67
11/27/2015 1:04	10:	Barnes Co Conv	62	69.8	18.68 OK	Occupied	15	14	13	12	11	1	5.42	5.21	3	2	3.33	3.67
11/27/2015 1:19	10:	Barnes Co Conv	62	69.58	18.68 OK	Occupied	15	14	13	12	11	1	5.42	5.21	3	2.5	3.33	3.67
11/27/2015 1:34	10:	Barnes Co Conv	62	69.58	18.68 OK	Occupied	15	14	13	12	11	1	5.42	5.21	3	2.5	3.33	4
11/27/2015 1:49	10:	Barnes Co Conv	62	69.58	18.68 OK	Occupied	15	14	13	12	11	1	5.42	5.21	3	2	3	3.67
11/27/2015 2:04	10:	Barnes Co Conv	62	69.58	18.68 OK	Occupied	15	14	13	12	11	1	5.42	5.21	2	1.86	3	3.67
11/27/2015 2:19	10:	Barnes Co Conv	62	69.58	18.68 OK	Occupied	15	14	13	12	11	1	5.42	5.25	2.5	2	3	4
11/27/2015 2:34	10:	Barnes Co Conv	62	69.58	18.68 OK	Occupied	15	14	13	12	11	1	5.42	5.21	2	2.5	3	3.67
11/27/2015 2:49	10:	Barnes Co Conv	62	69.58	18.68 OK	Occupied	15	14	13	12	11	1	5.38	5.21	2.5	2	3.33	4
11/27/2015 3:04	10:	Barnes Co Conv	62	69.58	18.16 OK	Occupied	15	14	13	12	11	1	5.42	5.21	2.5	2.5	3.33	3.67
11/27/2015 3:19	10:	Barnes Co Conv	62	69.58	18.68 OK	Occupied	15	14	13	12	11	1	5.42	5.21	3	2.5	3	3.67
11/27/2015 3:34	10:	Barnes Co Conv	62	69.58	18.68 OK	Occupied	15	14	13	12	11	1	5.42	5.21	3	2	3	3.67
11/27/2015 3:49	10:	Barnes Co Conv	62	69.58	18.68 OK	Occupied	15	14	13	12	11	1	5.42	5.21	3.33	2.5	3	3.67
11/27/2015 4:04	10:	Barnes Co Conv	62	69.58	18.42 OK	Occupied	15	14	13	12	11	1	5.42	5.21	3.67	2.5	3.33	4
11/27/2015 4:19	10:	Barnes Co Conv	70	69.8	4.21 OK	Occupied	15	14	13	12	11	1	5.42	5.21	2.5	2	3	3.67
11/27/2015 4:34	10:	Barnes Co Conv	70	70.03	3.95 OK	Occupied	15	14	13	12	11	1	5.42	5.25	3	1.86	3	3.67
11/27/2015 4:49	10:	Barnes Co Conv	70	70.7	5 OK	Occupied	15	14	13	12	11	1	5.42	5.21	2.5	2	3.33	3.67
11/27/2015 5:04	10:	Barnes Co Conv	70	70.7	5.53 OK	Occupied	15	14	13	12	11	1	5.42	5.21	3	2	3	4
11/27/2015 5:19	10:	Barnes Co Conv	70	70.93	5.79 OK	Occupied	15	14	13	12	11	1	5.42	5.21	2.5	2	2.5	3.67
11/27/2015 5:34	10:	Barnes Co Conv	70	71.15	6.32 OK	Occupied	15	14	13	12	11	1	5.42	5.25	2.5	1.86	3	4
11/27/2015 5:49	10:	Barnes Co Conv	70	71.15	6.58 OK	Occupied	15	14	13	12	11	1	5.42	5.21	3	2	3	4
11/27/2015 6:04	10:	Barnes Co Conv	70	71.38	6.58 OK	Occupied	15	14	13	12	11	1	5.42	5.21	2.5	2	3	4
11/27/2015 6:19	10:	Barnes Co Conv	70	71.38	6.84 OK	Occupied	15	14	13	12	11	1	5.42	5.21	3	2.5	3	3.67
11/27/2015 6:34	10:	Barnes Co Conv	70	71.6	6.84 OK	Occupied	15	14	13	12	11	1	5.42	5.21	2.5	2	3	3.67
11/27/2015 6:49	10:	Barnes Co Conv	70	71.6	7.11 OK	Occupied	15	14			11	1	5.42	5.21	3	2	3.33	3.67
11/27/2015 7:04	10:	Barnes Co Conv	70	71.6	7.11 OK	Occupied	15	14	13	12	11	1	5.42	5.21	2.5	2	3	3.67
11/27/2015 7:19	10:	Barnes Co Conv	70	71.6	7.11 OK	Occupied	15	14	13	12	11	1	5.42	5.21	2.5	2	3	4
11/27/2015 7:34	10:	Barnes Co Conv	70	71.83	7.37 OK	Occupied	15	14	13	12	11	1	5.42	5.21	2.5	2	3.33	3.67
11/27/2015 7:49	10:	Barnes Co Conv	70	71.83	7.37 OK	Occupied	15	14	13	12	11	1	5.42	5.21	2.5	1.71	2.5	4
11/27/2015 8:04	10	Barnes Co Conv	70	72.05	7.63 OK	Occupied	15	14	13	12	11	1	5.42	5.21	2.5	2.5	3.33	3.67
11/27/2015 8:19	10	Barnes Co Conv	70	72.05	7.89 OK	Occupied	15	14	13	12	11	1	5.42	5.21	2.5	2	3	3.67
11/27/2015 8:34	10	Barnes Co Conv	70	72.05	7.89 OK	Occupied	15	14	13	12	11	1	5.38	5.21	3	2	3.33	3.67
11/27/2015 8:49	10	Barnes Co Conv	70	71.83	8.42 OK	Occupied	15	14	13	12	11	1	5.42	5.21	3	2	3.33	3.67
11/27/2015 9:04	10	Barnes Co Conv	70	71.6	8.68 OK	Occupied	15	14	13	12	11	1	5.42	5.21	3	2	3	3.67

Adjust Setpoint(s) to More "Reasonable" Temperature

- NodelD Description Recommended Action
- 118 O'Brien Rm 25 Cool Above Setpoint is too low (63F). Try adjusting.
- 119 O'Brien Rm 27 Cool Above Setpoint is too low (63F). Try adjusting.

Check for Oil in Pneumatic Lines

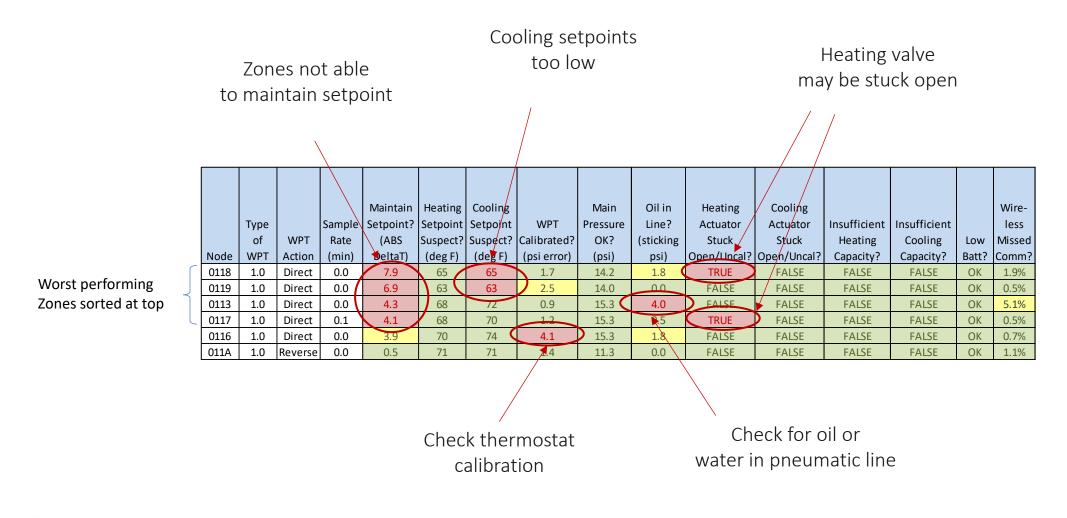
<u>NodeID</u>	Description	Recommended Action
113	O'Brien Rm23	May need to clean system, install new filter/dryers, replace WPT.

Actuators May be Stuck

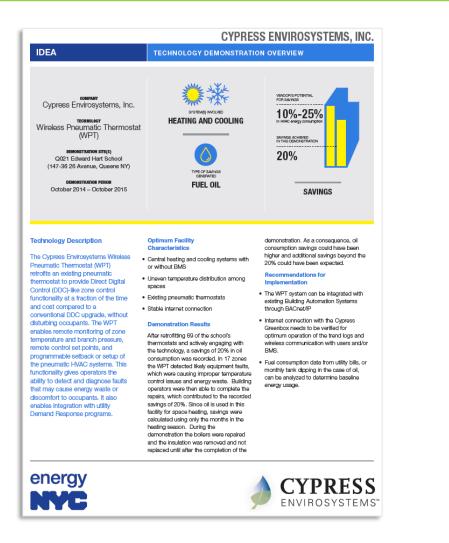
NodeID	Description	Recommended Action
118	O'Brien Rm 25	Check Heating Actuator - may be stuck open
117	O'Brien Rm 30	Check Heating Actuator - may be stuck open

Check Thermostat Calibration

 NodelD
 Description
 Recommended Action


 116
 O'Brien Rm 28
 Check thermostat calibration - 4.1 deg F offset

Advanced patented analytics software perform fault detection diagnostics and produces easy to read actionable report.



See the big picture and drill down on problems

NYC Case Study - M&V Validated 20% Savings

- Edward Hart Middle school Queens, NYC
- Uses Oil Fired Boilers, hot water radiators
- Fault detection, example:
 - Radiator hot water valve stuck open
 - Undetected probably many years
 - Occupants open window to compensate
 - Maintenance staff stretched thin, no data, not aware of situation

Reduced Hot/Cold Calls – 345 California St, San Francisco

- 17,000 sq-ft Class A Office Space, 31st Floor
- 48 Story Hi-Rise, managed by Cushman & Wakefield
- San Francisco Financial District
- Tenant: Private Equity Firm

Pre-WPT Installation Mar - Nov

W.O #	DATE	TENANT	FLOOR	OFFICE#	REQUEST	TEMP.	WORK PERFORMED	BY	#
148516	9-Mar-09		31	3115	COLD		FOUND STAT PUTTING OUT 1#	JIM	1
150125	6-Apr-09		31	LARGE CONF.	PRE COOL		PUT STAT INTO COOLING FOR MTNG.	TIM	2
150195	8-Apr-09		31	CONF ROOM	COLD		CAL. T-STAT AND SET TO 70-74	PAUL	3
150500	15-Apr-09		31	3146	COLD	70	OFFICE TEMP. WAS 70	PAUL	4
151016	27-Apr-09		31	3155	COLD	71	TEMP. WAS 71	FRAZER	5
153307	15-Jun-09		31	CONF ROOM	HOT	73	AMBIENT 73 LOWERED STAT TO 65/70	PAUL	6
153976	26-Jun-09		31	EAST CORNER	COLD	73	RM TEMP 73 RAISED STAT TO 74	JIM	7
153991	26-Jun-09		31	PINE SIDE	COLD	73	AREA TEMP. 73, RAISED STAT TO 74	JIM	8
N/A	6-Jul-09		31	3156	COLD	71	OFFICE TEMP. WAS 71	PAUL	9
154347	7-Jul-09		31	S. ADMIN	COLD	72	AREA TEMP WAS 72	C.W/ PF	10
155020	22-Jul-09		31	3115	COLD	71	AREA TEMP AT 71 F, TSTAT AT 75 F	ART	11
155582	5-Aug-09		31	3134-A	COLD	73	AREA TEMP WAS 73.	CRAIG	12
155597	5-Aug-09		31	N CONF RM.	COLD		TSTAT SET TO 65-69, RESET TO 70-73	ARTURO	13
155597	5-Aug-09		31	NORTH CONF RM	COLD	68	TEMP. WAS 68 RESET TO70-73	ART	14
155808	12-Aug-09		31	3104	HOT		RE-SET STAT TO 71-74, FROM 70-74	CRAIG	15
157113	8-Sep-09		31	3127	HOT		CAL. STAT AND SET TO 71-74	CRAIG	16
157849	30-Sep-09		31	CAL. ST. SIDE	COLD		CAL. AND SET STAT TO 75	CRAIG	17
158278	6-Oct-09		31	3134A	COLD		REDUCED CFM, REDIRECTED AIR FLOW	C.W./S.T.	18
158192	7-Oct-09		31	3134A	COLD	74	TEMP.IS 74 ADJUSTED TWO STATS IN AREA	ART	19
158563	16-Oct-09		31	EAST CORNER	HOT	73	SET STAT TO 73	GRAIG	20
159030	27-Oct-09		31	3152	HOT	71	OFFICE TEMP. WAS 71	PAUL	21
159095	29-Oct-09		31	EAST CORNER	COLD	72.5	AREA TEMP WAS 72.5	ARTURO	22
159113	29-Oct-09		31	3146	HOT		DECREASED STPT TO 71-74 FROM 71-75	ARTURO	23
159222	2-Nov-09		31	3146A	HOT		CHILLER STARTED AT 10:45	ARTURO	24
159222	2-Nov-09		31	3146A	WARM	73	AREA TEMP WAS 73. MADE NO ADJ.	ARTURO	25
159240	2-Nov-09		31	WEST ADMIN	WARM	71.5	AREA TEMP. WAS 71.5 MADE NO ADJ.	PAUL	26
159321	3-Nov-09		31	3143/3140	WARM	72.5	AREA TEMP. WAS 72.5 MADE NO ADJ.	PAUL	27
159759	13-Nov-09		31	N CONF RM.	COLD	69	INCREASED SPT TO 71-74, FROM 69-73	ARTURO	28
159854	17-Nov-09		31	N CONF RM.	COLD	69	CAL. AND SET STAT TO 71-74	CRAIG	29

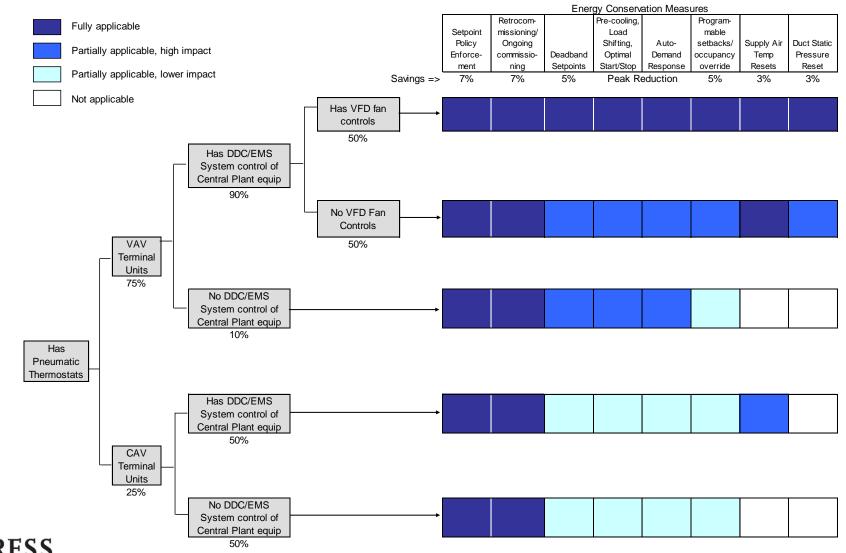
Post-WPT Installation Mar – Nov

W.O #	DATE	TENANT	FLOOR	OFFICE#	REQUEST	TEMP.	WORK PERFORMED	BY	#
164055	1-Mar-10		31	3155	COLD	69	NEW W.P.T. WAS SET AT 71, SET TO 74	PAUL	1
164473	5-Mar-10		31	3113	COLD	71	FOUND COAT HANGING OVER T-STAT	PHIL	2
164916	12-Mar-10		31	3134A	COLD	72	SUPPLY AIR AT 68F STAT SET @ 72, RAISED TO 73	ART	3
165486	25-Mar-10		31	3120A & B	COLD	72	RAISED SPT. TO 73	CRAIG	4
166825	27-Apr-10		31	3120A & B	COLD	72	WPT WAS SET TO 73, RAISED TO 74	PAUL	5
166853	27-Apr-10		31	3121	HOT	77	UNABLE TO CALIBRATE WPT WILL FOLLOW-UP	PHIL	6
166994	3-May-10		31	3121	HOT	76	FOLLOW-UP TO REPLACEMENT OF WPT BY	CRAIG	7
169919	28-Jun-10		31	3155	COLD	70	RESET STAT TO 72	CRAIG	8
174033	27-Sep-10		31	PINE SIDE	HOT	80	CALIBRATED (3X) STATS AND SET AT 70 F.	CRAIG	9
176108	17-Nov-10		31	3155	COLD	70	STAT WAS SET @ 71 RAISED TO 73	PAUL	10

✓ 66% reduction in hot/cold calls
✓ 25 avoided calls/year
✓ 7-10¢/sq-ft/year savings

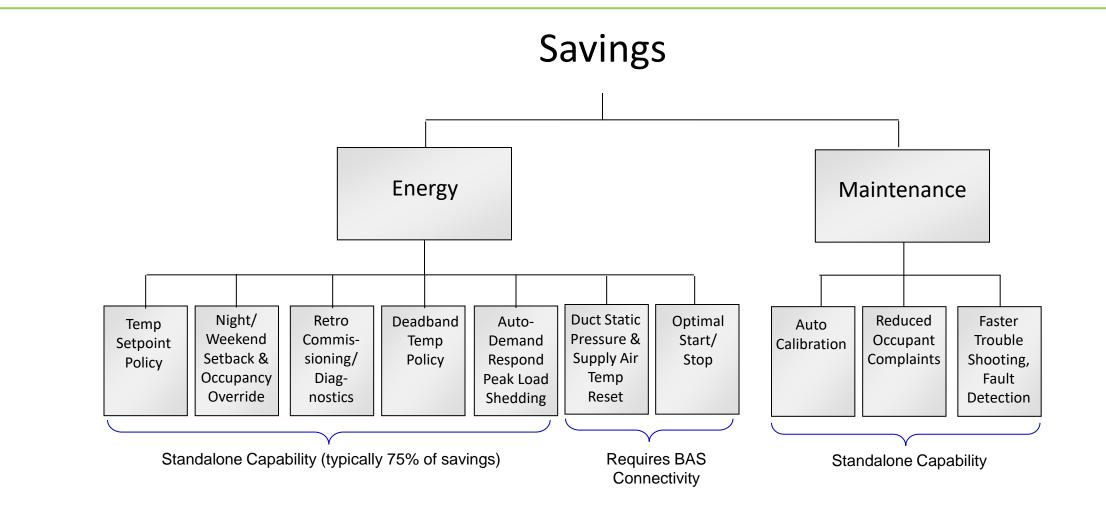
Benefits of SMARTPneumatics

- Save energy
- Enhance occupant comfort
- Reduce maintenance labor and hot/cold calls
- Avoid damage to equipment
- Meet LEED ongoing commissioning requirements



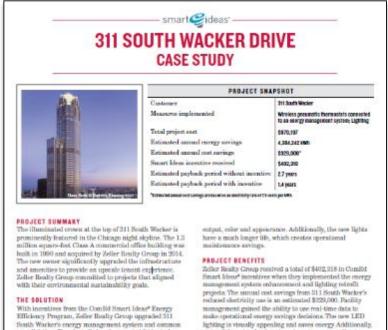
How to Help Existing Buildings

STEP 1	STEP 2	STEP 3
Non-Invasive retrofit existing thermostats to WPT	Analyze your pneumatic system for faults	Implement Energy Savings Strategies
Image: Wireless Pneumatic twpr)	 SMARTPneumatics Stuck actuators? Need calibration? Supply air leak? Oscillating dampers? Air system contamination? Insufficient cooling? 	 Setpoint Enforcement Separate Heat/Cool Setpoints Programmable Schedules Auto Demand Response Duct Static Pressure Reset Supply Air Temperature Reset Optimal Start/Stop



What Control Strategies are Applicable for this Building?

Enable Energy Savings Strategies – 20-30% reduction


CYPRESS
 ENVIROSYSTEMS

Same Benefits as Direct Digital Control – but at a Fraction of the Price and Disruption

ComEd Case Study - Chicago

- 65 story tower, built in 1990
- 1.4 million sq-ft
- Utility validated energy savings of 30% per year
- Payback period of 1.8 years with ComEd incentive (3.6 years without incentive).

area lighting. They installed and connected 944 wireless prounnable thermostate to an Internet-enabled energy management system that tracks and controls electricity. use through a computerized network of monitors and sensors. As part of the building retrofit, 296 inefficient T12 fluorescent lamps were replaced with T8 fluorescent. lighting and 95 high-wattage PAR lamps were replaced

state-of-the-art technology investments are appealing to potential tenants. "311 South Wackor is the first major office tawer in Chicago to install wireless procumatic thermostate connected to a cloud based intelligent building system. A total of 944 thermostate were installed by our engineering team in record time," said Consolute Gattuse, Vice President of Technical Operations, Zeller Realty Group. "The system allows sophisticated algorithms to utilize real time data to make operational energy saving decisions."

FOR MORE INFORMATION

For more information about ComEd Smart Ideas, visit ComEd.com/BizIncentives, call 855-433-2700 during normal business hours or email us at SmartildeasBig@ComEd.com

Constructed & Share Computer 2012 and Many Rearry Difference Program in Andred by Confid Sciences in Surgiliance with Direct law

with LED lights. The new lighting offers a decrease in

electricity use as well as improved light quality, uniformity,

311 S. Wacker Drive ECM's

	Applicability for 311 South Wacker Dr.	Typical Savings based DDC and WPT experience	Est. Savings for 311 Wacker Dr.
Programmable Setbacks	Setback for about 60% of zones for heating only. (Cooling setback already in place at central plant level).	5-10%	9%
Duct Static Pressure Reset	Fans have variable pitch blades which can be modulated based on WPT branch pressure readings	5-10%	6%
Setpoint Enforcement, auto-calibration, continuous commissioning	Enforce setpoints to reasonable levels (i.e. between 65 and 75 degrees) to avoid simultaneous heating/cooling. Only apply to perimeter reheat zones.	5-10%	3%
Supply Air Temp Reset	Use WPT temperature sensors to optimize supply air temp at AHU's	2-4%	3%
Deadband Setpoints	Deadband setpoints may be applicable for some areas - verify tenant service level agreement	3-5%	3%
Optimal Start/Stop	AHU's on set schedule - can introduce optimal start/stop for cooling only	5-10%	2%
Potential Energy Savings via Applicable ECM's			26%

E CM Fully Applicable

plicable ECM Partially Applicable

ECM Not Applicable

Projected Savings: 26%

Actual Measured Savings: 30% (over 18 month period post retrofit)

MUSH Customers - Examples

Government

- Federal GSA (7 sites)
- NASA (JPL, Ames)
- Architect of the Capitol Library of Congress
- City of New York (20+ muni buildings)
- City of Winnipeg (6 buildings)
- New Hampshire State Legislative Office Building
- Park Ridge IL Library
- LA County Courthouses

K-12

- New York City DoE (100+ schools)
- North Rockland NY SD (6 schools)
- Hackensack NJ SD (3 schools)
- Rockford IL SD (6 schools)
- Spring TX SD
- Monroe Woodbury Central SD (4 schools)
- Northbridge SD

- Higher Education

- Notre Dame (12+ buildings)
- CalPoly San Luis Obispo (5 buildings)
- Texas A&M
- University of Toronto (Green Ribbon Award)
- Illinois State University
- UNC Charlotte and UNC Wilmington
- CUNY (2 campuses) and SUNY (2 campuses)
- Hospitals
- Sutter Health (6 sites)
- Advocate/Atrium
- VA Medical Centers (12 sites)
- NYC Health and Human Services (3 sites)
- Ascension
- Etobicoke, Trillium Toronto
- LifePoint (14 sites, in progress)

Summary

- Pneumatically controlled buildings use more energy, require more maintenance, and provide lower tenant comfort
- Upgrading to conventional Direct Digital Controls (DDC) is extremely costly and disruptive to tenants
- The Wireless Pneumatic Thermostat (WPT) provides a non-invasive upgrade solution which cost 70% less than conventional DDC
- Payback periods are typically three years or less utility rebates may deliver even shorter payback periods
- The Wireless Pneumatic Thermostat is proven technology which is tested and recommended by the US Dept of Energy and receives rebates from numerous utilities nationwide.

Additional Non-Invasive Retrofit Solutions

Wireless Steam Trap Monitor

Leaking Traps Waste Energy

Typical Steam Trap

CYPRESS ENVIROSYSTEMS WIRELESS STEAM TRAP MONITOR

- Necessary part of the steam distribution system, usually hundreds of units per site
- 15-20% average failure rate; leaks steam
- Failed traps lose \$5,000 per year (1/8" orifice)
- Manual inspection typically done annually labor intensive, do not catch problems in timely manner
- Solution: Wireless steam trap monitor detects faults and alarms on error, avoiding expensive leak loss
- Non-invasive installation: no breaking seals, wireless, integrates with BMS
- Battery life of 3+ years at typical sample rates
- IP65/NEMA 4 rated for outdoor use
- One year payback on investment

Wireless Gauge Reader

- "Electronic Eyeball" reads gauges and transmits readings wirelessly
- Non-invasive, clamp-on to existing gauges in minutes
- No downtime, no leak check, no wiring, no drawings
- Battery life of 3+ years at 15 minute sample rate
- IP56/NEMA 4 rated for outdoor use
- Various size and types of mounting adapters to fit most existing gauges
- Reads dial gauges, hour meters, LED/LCD displays

Wireless Humidity and Temperature Monitor

- -20 °C to +70 °C (-4 °F to 158 °F) Temperature Range
- 0 100% Relative Humidity Range
- Magnetic Mounting for steel walls or columns
- Adhesive Mounting for other surfaces
- Battery life of 3+ years at 15 minute sample rate
- IP56/NEMA 4 rated for outdoor use

Wireless Transducer Reader

- Enables wireless remote monitoring of virtually any analog transducer or instrument with the following outputs: 4-20mA, 0-5V, or 0-10V, RS-232, RS-485, thermocouple, thermistor
- Compatible with most existing flow meters, current meters, particle counters, thermocouples, weigh scales, etc.
- Battery life of 3+ years at 15 minute sample rate
- Optional enclosures for NEMA 6, IP 67 protection
- Enables data logging to enable trend analysis, notification, or statistical process control

