Innovative Demonstrations for Energy Adaptability QS-21 Wireless Pneumatic Thermostat Demonstration

Final Report April 7, 2015

Objective of IDEAS Demonstration

Demonstrate ability of Wireless Pneumatic Thermostats to improve the control of heating in New York City Schools. By replacing existing legacy thermostats with Wireless Pneumatic Thermostats, the following benefits would be realized:

- Ability to implement setpoint setback during occupied hours reduce unnecessary heating when zones are not occupied
- Ability to monitor operation of terminal units at each zone to detect and diagnose faults which may cause energy waste or discomfort to occupants

Overview of Demonstration

All 69 legacy pneumatic thermostats at QS-21 were replaced with Wireless Pneumatic Thermostats in the summer of 2014. Since QS-21 only had heating and no cooling, data collection started only when heating season started in November 2014.

The Wireless Pneumatic Thermostats controlled the hot water valves which control space heating. Energy savings would be realized via improved control of heating setpoints which would lower hot water consumption. Since QS-21 does not have hot water usage meters installed, it was not possible to directly measure the hot water savings. Instead, savings will be manifested through reduced consumption of fuel oil by the boilers vs. prior years (adjusted by degree days for year-on-year comparison).

Interim Findings

We compared the current heating season fuel oil consumption vs. prior year, and adjusted for heating degree days. QS-21 realized a reduction of 20% in fuel oil consumption (Figure I), which we attribute to the WPT savings strategies since no other material changes occurred to affect fuel consumption.

2013-2014 Heating Season			2014-	2015 Heating Se	Difference		
Month	Fuel Consumption (gal)	Heating deg days	Month	Fuel Consumption (gal)	Heating deg days	Unadjusted	Adjusted for deg-days
Nov-13	3,913	577	Nov-14	2,443	579	-38%	-38%
Dec-13	4,449	826	Dec-14	3,310	752	-26%	-23%
Jan-14	7,169	1,123	Jan-15	5,860	1,086	-18%	-18%
Feb-14	6,334	938	Feb-15	5,912	1,136	-7%	-8%
Total	21,865	3,464	Feb-15	17,525	3,553	-20%	-20%

Figure I – Measure Fuel Savings at	OS-21
inguier measurer der Sarings de	0,0

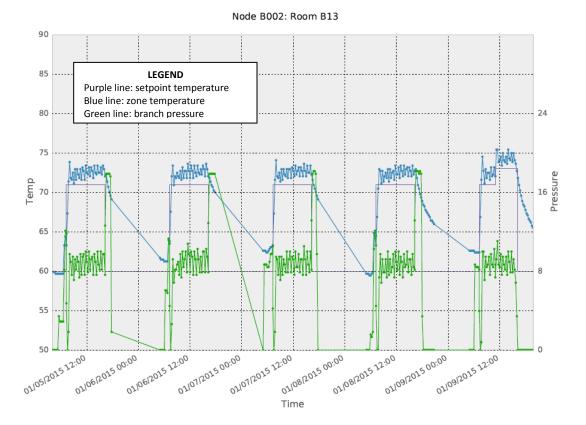
We were able to observe the behavior of the thermostats to see whether they were able to execute the setpoint setback and fault detection functions. We took one week of data from January 5th through 9th (a relative cold period in NYC – see Figure II for weather data).

All of the thermostats were programmed for occupied and unoccupied schedules. Typical zone schedule is:

Occupied:

- 7am to 4pm on weekdays
- 70 deg F setpoint

Unoccupied:


- 4pm to 6am and weekends
- 60 deg F setpoint

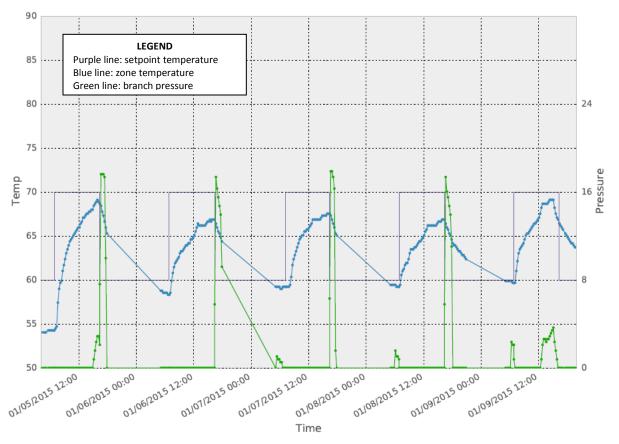
Note: that the building boilers and pneumatic compressors were shutdown between 6pm and 4am on weekdays. During this shutdown period, the entire system is off and the Wireless Pneumatic Thermostats did not provide any control. For the purpose of this demonstration, we focused on the time periods where the Wireless Pneumatic Thermostat control is active.

United States	New York, LOCAL WEAT	HER M	GRAME	t		
Now We	skend Ext	ended Mon	th Radar	MinuteCa	st*	
< December 201	View:		January *	2015 +		February 2015
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Dec 20	29	30	31	Jan 1	2	3
Actual Tamp 54° to 43°	Actual Temp 44° Lo 34°		Actual Temp 32° Lo 27°		Actual Temp 42° to 35°	
Hist. Avg. 40" Lo 29	1946, Aug. 39° Lo 20'	Huss Avg. 39" Lo 28"	Hat. Aug. 39" Lo 28"	Hist Avg. 39* Lo 28*	Hist, Aug. 39* Lo 28*	Hist, Aug. 39° Lo 20'
4	5	6	7	8	9	10
Actual Tang 56° Lo 41°	49° to 21°	Actual Tamp 22° Lo 19°	Actual Temp 23° to 9°	Actual Temp 21° Lo 8*	Actual Temp 33° Lt 19°	
	38° Lo 27		38° Lo 27		38° Lo 27	
-11	12	13	14	15	16	17

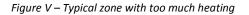
Figure II – Outside Temperature Data for January 2015

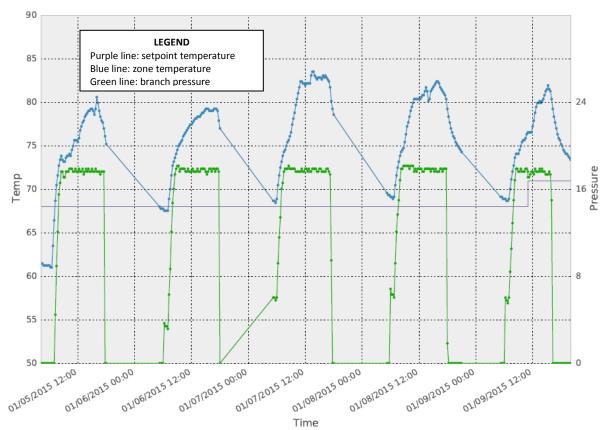
Of the 69 thermostats installed, 52 units controlled temperature per the scheduled setpoints i.e. completely normal function. For these units, the space temperatures showed a reduction during unoccupied periods – a clear indication of lower heat consumption. Figure III shows a typical plot of the data captured from one Wireless Pneumatic Thermostat which indicate correct function: the setpoints follow the programmed schedule, and the zone temperatures follow the setpoints. The branch pressure is also operating normally to control the hot water valve to regulate the space temperature.

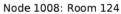
Figure III – Typical Wireless Pneumatic Thermostat Zone showing proper control


For the remaining 17 zones, the Wireless Pneumatic Thermostats detected likely equipment faults which prevented them from controlling the zone temperature properly:

- Two zones had insufficient heating:
 - Despite a low branch pressure output from the Wireless Pneumatic Thermostat (i.e. hot water valve fully open), the space temperature was unable to reach the setpoint (see Figure IV for typical case).
 - This may be due to the heating valve stuck in a closed or partially closed position, and may need to be repaired or replaced.
- Fourteen zones had too much heating:
 - Despite a high branch pressure output from the Wireless Pneumatic Thermostat which is fully closing the hot water valve, the space temperature is above the setpoint (see Figure V for typical case).
 - This may be due to the heating valve stuck in an open position, and may need to be repaired or replaced.


- One zone had low/no supply air pressure:
 - Without supply air pressure, the Wireless Pneumatic Thermostat is unable to operate properly.
 - This may be due to a broken or leaking pneumatic line supplying the air pressure, and would need to be repaired or replaced.


Figure VI shows a summary of which zones exhibited which behavior. The data also shows that 11 zones had pneumatic calibration which were slightly off, which resulted in a 1-2 degree temperature offset from the setpoint. This may be the result of slightly different valve spring constants at that zone, or slight deviation during the calibration process. In any case, Cypress Envirosystems recommends that the Wireless Pneumatic Thermostats for these zones be recalibrated to tighten the temperature control (a process which only takes two minute per zone).


Figure IV – Typical zone with insufficient heating

Node 1002: Auditorium

			Not		Supply	Calibration
		Normal	enough	Too much	Pressure	Adj.
NodeID	Node Name	Function	heat	heat	Issue	Recommended
1001	Lobby					1
1002	Auditorium					
1003	Room 128					
1004	Room 125					
1005	Principal					1
1006	Room 123					1
1007	Room 126					
1008	Room 124					
1009	Room 117A					
100A	Room 117B					1
100B	Room 115					
100C	Room 113					
100D	Room 112					
100E	Room 111					
100F	Room 110					
1011	Room 109					
1012	Room 108					
1013	Room 107					
1014	Room 106					
1015	Room 142A					
1016	Room 142B					
1017	Cafeteria-A					
1018	Cafeteria-B					
1019	Cafeteria-C					1
101A	Cafeteria-D					1
101B	Kitchen					1
101C	Gym-A					
101D	Gym-B					
101E	Stage-Left					
101F	Stage-Right					
1021	PTA Room					
2001	Room 228					
2002	Room 225					
2003	Room 226					
2004	Room 221					
2005	Room 224					
2006	Room 219					1
2007	Room 215					
2008	Room 213					
2009	Room 212					
200A	Room 211					
200B	Room 210					

200C	Room 209			1		
200D	Room 208					
200E	Room 207					
200F	Room 206					1
3001	Room 328					
3002	Room 325					
3003	Room 321					
3004	Room 326					1
3005	Room 319					
3006	Room 324					
3007	Room 315					
3008	Room 313					
3009	Room 312					
300A	Room 311					
300B	Room 310					
300C	Room 308					
300D	Room 309					
300E	Room 305					
300F	Room 304					
3011	Room 300					1
B001	Room B12					
B002	Room B13					
B003	Room B11					
B004	Room B10					
B005	Room B9					
B006	Room B8					
B007	Room B2					
Total	69	52	2	14	1	11

Conclusions

The Wireless Pneumatic Thermostat deployment at QS-21 appear to be delivering the two benefits that were intended. The setpoint setbacks are reducing the heating load and resulted in tangible fuel oil savings of 20%. The fault detection discovered potential equipment failures which are likely causing energy waste (i.e. heating valves stuck open) which will deliver additional energy savings when corrected.

Appendix

Complete data plots for all Wireless Pneumatic Thermostat Zones For January 5 to 9, 2015